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LETTER TO THE EDITOR 

On secondary and higher-generation ghosts 

M A Namaziet and D Storey$ 
International Centre for Theoretical Physics, Trieste, Italy 

Received 24 January 1980 

Abstract. We give a simplified discussion of ‘secondary’ and further Faddeev-Popov ghost 
fields occurring in covariantly quantised gauge theories with differentially constrained 
gauge transformations. Several examples of this new phenomenon are presented. 

In connection with recent work on the superfield quantisation of supergravity, it was 
discovered that in certain circumstances covariant quantisation leads to the occurrence 
of ‘secondary’ Faddeev-Popov ghost fields (Namazie and Storey 1979). These arise in 
gauge theories for which the gauge parameter is subject to a differential constraint (or, 
equivalently, when only a non-local projection of the parameter is actually involved in 
the gauge transformation). However, this rather simple but interesting feature was 
perhaps somewhat obscured in Namazie and Storey (1979) by the intricate supergravity 
formalism involved. 

More recently, another example of this phenomenon has been provided by 
Townsend’s (1979) discussion of the covariant quantisation of antisymmetric rank-two 
tensor gauge fields. 

It is the purpose of this Letter to point out that these are particular examples of the 
more general phenomenon referred to above, and to give further examples of current 
interest. 

To illustrate our remarks, we begin by briefly recapitulating the essential details of 
the antisymmetric rank-two tensor case (Townsend 1979), which is perhaps the 
simplest. The Lagrangian for the field A,,(= A[,”]) is given by 

9 = ;(a[aAp])* 

and is invariant under the gauge transformation 

A,, +A,,, + a[,A,I. 

Clearly only the transverse projection of A,, is involved here, and if desired the 
differential condition 

a,A, = 0 

could be stipulated. A suitable gauge-fixing constraint is 

K,=2a,AV,=0, 
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and, to maintain manifest gauge invariance of the functional integral, the ghost 
Lagrangian 

2?G =B:’(GK,/SA,)B12’ =Bjf’(Uq,, -8,  du)BL2’ 

must be added, where BE) and BIZ) are the anticommuting (Feynman-DeWitt-) 
Faddeev-Popov ghost fields. We now observe that 2 ? ~  itself has two gauge invariances, 
namely 

BI” + B p  + a , F  and BF) + Bf’  + a , P ,  
where E‘’’ and 
fixing constraints are necessary and may be taken to be 

are (independent) anticommuting parameters. Thus further gauge- 

d,Bt’ = a$:’ = 0. 

These lead to the secondary ghost Lagrangian 

z k  = c(‘)/Jc(~) + ~ ( 3 ) 0 ~ ( 4 ) ,  

where C“), . . . , Ci4’ are commuting scalars. The question of unitarity and the actual 
book-keeping of physical modes are discussed in detail in Townsend (1979). The 
number of surviving degrees of freedom is arrived at as follows. The effective 
Lagrangian (turning gauge-fixing constraints into gauge-fixing terms in the standard 
manner) is 

T e f i  = ? ( J [ A , v ] I 2  i- (1 / a ~ ) ( a J u , ) ~  + B:’ ( O T , ~  - a, au)B 1” 
+ (l/CuB)B:’ a, I3,BI2’ + c‘”[Ilc‘2’+ C‘3’0c‘4’. 

The A,, part of zeR describes six modes; the B, part subtracts eight (since B:’ and B;? 
are anticommuting); finally, the C terms add four, leaving a total of two degrees of 
freedom. One of these decouples due to Ward identities, and thus one is left with a 
single physical degree of freedom describing a scalar field. 

A similar analysis may be applied to a totally antisymmetric rank-three tensor field, 
with amusing results. The Lagrangian is 

(1) 2? = -2(&7&A1) 

A , , ~  + A , u A  + a [ , ~ . ~ ~ .  (2) 

2 

invariant under 

Note that not all of the antisymmetric parameter A,, actually takes part in (2), but only 
the projection P,Yu&T, where 

p , U U 7  E $ ( q & U T U T  - T f i T q U , )  - (1/20)(7,C7 + T U 7  - TFT - 7 ) Y U  a, 

and so one could impose the differential constraint 

a, A,, = 0 

to remove this redundancy. 
This field is non-propagating in 3 + 1 dimensions, but has nevertheless found several 

applications of late. One such is in a four-dimensional extension of the Schwinger 
model, conjectured to be relevant to confinement (Aurilia 1979). In addition, the 
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Lagrangian (1) is identical to that of certain auxiliary fields occurring in supergravity, 
after a duality transformation; defining 

A: (1/3 !)EW-~A&UA, 

the Lagrangian (1) may be rewritten as 

2 = 3(a&)2 

(cf Namazie and Storey (1979) for instance). Furthermore, such a field also appears in 
10 + l-dimensional supergravity, which becomes N = 8 extended supergravity after 
dimensional reduction (Cremmer and Julia 1979). (In 10 + 1 dimensions it is in fact a 
propagating field.) 

Applying the previous argument, one obtains the effective Lagrangian 

+ ( 1 / a B ) ( a r ~ ~ 1 ) ( a A ~ j \ 2 , ) ) + ~ ~ ) ( ~ 7 7 , ,  -8, a,)c12‘ 
+ cl” (077,” -a, au)Cl4) + (1/ac) a,cl” a,c12’ + ( l / a &  ) a,c/y avc,’4’ 

2 e f f  = -2(a[&~uA\])~+ (l/a.4)(awAwuA)2+B{ti a,] a[,Bt2,’] 

(3) 

This time three generations of ghosts appear; not only do the (antisymmetric) Faddeev- 
Popov ghosts BE: and Bfi have commuting secondary ghosts CE1-(4) associated with 
them, but also the secondary ghosts require gauge-fixing and hence anticommuting 
‘tertiary’ ghosts D“’-‘8’ are needed. The counting of degrees of freedom (in 3 + 1 
dimensions) is as follows: 

+ ~ ( 1 ) 0 ~ ( 2 )  + ~ ( 3 1 0 0 ( 4 )  + ~ ( 5 ) 0 ~ ( 6 )  + ~ ( 7 ) 0 ~ ( 8 ) .  

AfivA: +4, B,”: -12, C,: +16, D: -8. 

Summing the modes, one obtains a total of zero, in accordance with the fact that A,,A is 
non-propagating. Unlike the previous example, Ward identities need not be invoked to 
obtain the correct count. It should be pointed out, however, that this feature is peculiar 
to four dimensions. In d dimensions one finds d -4 extra unwanted modes, which 
presumably decouple. 

It is clear that these arguments may be generalised to an antisymmetric rank-r 
tensor field (in sufficiently high dimensions to prevent the Lagrangian vanishing 
identically, i.e. at least r + l ) .  There will be r generations of ghosts, with the nth 
generation containing 2” independent ghost fields which anticommute (commute) if n is 
odd (even). It would be of interest to extend the unitarity arguments of Townsend 
(1979) to cover this general case. 

One situation in which these new ghost fields would become of practical importance 
is in background field quantum gravity (or indeed supergravity) calculations. Just as in 
the background field Maxwell-Einstein theory (Deser and van Nieuwenhuizen 1974), 
in which the normally decoupled Faddeev-Popov ghosts of Lorentz gauge electro- 
magnetism must be included in loop diagrams, so here too every generation of ghosts 
will contribute non-trivially to the background functional. An interesting aspect of this 
would be to compare the one-loop calculations for the A,, field coupled to gravity with 
those already performed for the more conventional scalar theories (t’ Hooft and 
Veltman 1974), and in particular to see if the issue of non-renormalisability is affected. 

As a final example of a different kind, we consider a modified linear spin-2 theory, 
with Lagrangian 

(4) 1 
= ihp,Ah,v,A - h,v,&Av,A + (ki + l)h,v,FhAA,u + (k2 -T)h,,,Ahvv,A 
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invariant under 

h,” -+ h,” + S(,,”, 

%S, = 0 

with the differential constraint 

imposed. If the arbitrary constants k l  and kZ are both set to zero, 2 becomes the 
linearised Einstein-Hilbert action, for which equation (6) is no longer required. In fact 
(6) has the interpretation of a volume-preserving restriction on the transformation (3, 
and is quite analogous to the supervolume-preserving constraint imposed in superfield 
supergravity, as formulated by Ogievetsky and Sokatchev (1979). Hence this ‘toy’ 
model, although containing metric ghosts (van Nieuwenhuizen 1973), is of pedagogical 
value in exhibiting the salient features of the role of a differential constraint in the 
quantisation of linearised superfield supergravity, while avoiding the somewhat 
involved supersymmetry formalism. 

A suitable gauge-fixing constraint is 

leading to the ghost Lagrangian 

‘The ghost gauge-fixing 

a,l, = awl: = 0 

leads in turn to the secondary ghost Lagrangian 

Y b  = mOn + m’On’ 

(1, and 1; are anticommuting; m, n, m’, n’ are commuting fields). At  present it is not 
clear to us what an appropriate non-linear extension of (4) would be. 

We end by remarking that, in the light of recent work on the geometrical inter- 
pretation of the Faddeev-Popov determinant (Babelon and Viallet 1979, Thierry-Mieg 
1979), it would be interesting to understand the geometrical role of these higher- 
generation ghosts. 

We are very grateful for discussions with Professor Abdus Salam and Dr A Aurilia, and 
thank Professor Abdus Salam, the International Atomic Energy Agency and UNESCO 
for hospitality at the International Centre for Theoretical Physics, Trieste. 
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